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Abstract

Many public policies rely on multiple agencies, which raises the question of how agen-
cies with overlapping policy responsibilities coordinate their decisions. We consider a model
of coordination in which a political executive can provide subsidize coordination between two
agencies and consider how this possibility affects both the agencies’ incentives and, ultimately,
social welfare. Our model of subsidizing coordination is very simple: an executive can invest
his or her own resources in a coordination protocol that the agencies can (but need not) use
to align their decisions. We consider the impact of scarce attention at the agency level and
demonstrate that, while coordination between the agencies is maximized by the agencies hav-
ing aligned policy preferences, the fact that the executive can invest in the communication
protocol undermines these incentives.
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1 Coordination in Bureaucratic Policymaking

In terms of how the state affects the daily lives of its citizens, most policy-making is bureaucratic
policy-making. Bureaucratic policy-making both reflects, and is often justified by, expertise (e.g.,
Gailmard and Patty (2012)). One important potential downside of relying on experts is that few,
if any, people are “general experts”: instead, both people and bureaucratic agencies are typically
specialized. Both individual expertise and most agencies’ statutory authorities are domain-specific.

Policy questions do not always fit neatly into one agency’s jurisdiction. Examples of such
questions range from the relatively mundane (which agency is responsible for regulating the safety
of garbage trucks?) to the quite serious (e.g., Hurricane Katrina in 2005, the 2010 Deepwater Hori-
zon disaster, the 2014 Flint, Michigan water crisis, and the 2023 Norfolk Southern derailment in
East Palestine, Ohio). The emergence of such issues to the national level has even prompted both
overhauls of existing agencies (e.g., the dismantling of the Mineral Management Service (MMS)
following the Deepwater Horizon disaster), creation of new ones (e.g., the Consumer Financial Pro-
tection Bureau (CFPB) after the financial crisis of 2007-08), and combinations of the two (e.g., the
Department of Homeland Security (DHS) following the September 11th, 2001 terrorist attacks).

Such major realignments of the administrative state are relatively rare. But the general issue
at play in them — the need for coordination between agencies — is omnipresent. This has been
recognized for many years, of course. In the United States, this is seen as early as the early New
Deal (1933-1935). For example, prior to passage of the Federal Register Act in 1935,1 the US
Federal Government did not even have a central repository for its agencies’ regulations. As the
federal administrative state grew in size and complexity (largely mirroring the dynamics of society
and the economy as a whole), legal and policy scholars observed that agencies had little incentive
to coordinate their more quotidian policy choices, in spite of growing evidence that coordination
failures could eventually produce policy failures.

This fact arguably led to the creation of agencies explicitly charged with coordinating other
agencies’ activities. Examples include the Environmental Protection Agency (EPA), the Federal
Emergency Management Agency (FEMA), and the Department of Homeland Security (DHS). At
the same time, some coordination problems are arguably “baked into” the structure of the executive
branch of the Federal Government. For example, the National Transportation Safety Board (NTSB)
and Federal Aviation Administration (FAA) have split, but overlapping, authority for air travel
safety in the United States, the EPA and the Army Corps of Engineers have similarly complicated
overlapping authority with respect to water pollution, and the list of agencies with overlapping
authority in law enforcement is very long: to name only three, consider the Federal Bureau of
Investigation (FBI), the Drug Enforcement Agency (DEA), and the Bureau of Alcohol, Tobacco,

149 Stat. 500, enacted July 26, 1935.
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and Firearms (ATF). The fact that Congress and presidents have both recognized coordination
problems and created them in the administrative policy-making process is a little puzzling. We
return to this question in more detail in Section 4.

2 A Simple Model of Policy Coordination

Our baseline model of bureaucratic coordination is based on the the battle of the sexes game,
pictured in Figure 1. The parameter α ∈ (0,1], which we refer to as the alignment of the agencies’

A B
A (α, 2-α) (0, 0)
B (0, 0) (2-α, α)

Figure 1: A Family of Asymmetric Coordination Games (α ∈ (0,1])

preferences, is the heart of our focus in this article.2 As α increases, we say that agencies’ pref-
erences are more closely aligned and, if α = 1, then we say that their preferences are completely
aligned.

Equilibrium Bureaucratic Coordination. If Agencies 1 and 2 each choose policy without
knowing what policy the other agency chooses,3 there are three Nash equilibria of the game in
Figure 1. Two of these are in pure strategies (both agencies choosing a∗i = A and both agencies
choosing a∗i = B). The third equilibrium involves both agencies randomizing between ai = A and
ai = B. Letting σi ≡ Pr[ai = A] denote the probability that agency i chooses policy A, this mixed
strategy equilibrium is a function of α:

σ∗1(α) =
α

2
, and

σ∗2(α) =
2 − α

2
.

We refer to this equilibrium profile as the α-MSNE. The following proposition simple, but key to
our analysis. It states that coordination is more likely to be successful between agencies with more
closely aligned preferences and maximized by agencies with completely aligned preferences.

Proposition 1 The probability of coordination in the α-MSNE is strictly increasing in α ∈ [0,1].

2The case of α = 0 is omitted, because there a continuum of Nash equilibria and, substantively, the game is no
longer a coordination game in that case.

3In game theoretic terminology, the agencies are choosing policies simultaneously.
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The implications of Proposition 1 will appear multiple times in our subsequent analysis. In partic-
ular, because greater alignment promotes higher success rates in the coordination game between
the agencies, it will also reduce the incentive to exert costly effort to augment this probability of
success. With that in mind, the following remark clarifies that our analysis is not predicated on the
supposition that agencies must always be playing the α-MSNE.

2.1 Subsidized Coordination

We now suppose that there is a principal who wants the agencies to successfully coordinate and
who can subsidize the agencies’ efforts to coordinate. We model the effects of this subsidy in
a “black box” fashion by assuming that the principal can invest in a communication protocol,
which characterized by a probability, π ∈ [0,1].4 The probability π represents the probability
that the communication protocol will recommend that the agencies coordinate on A, and 1 − π

represents the probability that it will recommend coordination on B. After observing α and π, the
principal P chooses how much to invest in the protocol, c ∈ [0,1]. The direct cost to P of investing
c is c2. Given any investment c ∈ [0,1], the probability of communication failure is 1 − c. When
the communication protocol fails, the agencies will play the α-MSNE.

Timing of the Game. The timing of information and decision-making is as follows.

1. The alignment value, α, and the communication protocol, π, are made common knowledge.

2. The principal chooses a level of investment in communication, c ∈ [0,1].

3. Policy-making by the agencies proceeds as follows:

(a) With probability 1 − c, the device fails, and the agencies play the α-MSNE.

(b) With probability c ⋅ π, the device coordinates the agencies on A (a = (A,A)).

(c) With probability c ⋅ (1 − π), the device coordinates the agencies on B (a = (B,B)).

4. The choices (a1, a2) are revealed, the game concludes, and players receive their payoffs.

The Principal’s Subsidy c as “Bailing Out” the Agencies. For simplicity of discussion, we
refer to P investing a positive amount, c > 0, into the communication protocol as “bailing out” the
agencies from their coordination problem. This language might seem strange at first, but it will
be become more clear why we use this term when we consider the agencies’ induced preferences
over alignment, α. Put simply, the two agencies unambiguously gain from higher investment by P

4For now, we assume that π is exogenous and common knowledge.
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in the communication protocol. With that in hand, we now turn to consider P ’s incentives when
choosing how much to invest, c, in the communication protocol’s reliability.

Equilibrium Reliability, c∗(α,π). For any given protocol, π, the principal’s equilibrium ex-
pected payoff depends on α and c:

EU∗P (c ∣ α) = c

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Prob. successful
communication

+ (1 − c)

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
Prob. failed

communication

⋅
α(2 − α)

2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Prob. coordination
in MSNE

− c2

²
Direct Cost

. (1)

Notice that π is not included in the principal’s payoff function. This is because we assume that the
principal strictly gains from successful coordination but is otherwise indifferent on which outcome
(A or B) the agencies coordinate. This simplifying assumption will allow us to identify conditions
under which an unbiased principal will nonetheless benefit from using a biased communication
protocol (i.e., one with π ≠ 1/2).

Our main conclusion in this baseline model is that the principal’s equilibrium payoff is increas-
ing, and his or her equilibrium investment level is decreasing, in alignment, α. These are stated in
the following proposition.

Proposition 2 In equilibrium, P ’s investment in reliability, c∗(α), is strictly decreasing in the

agencies’ common alignment, α, and P ’s expected equilibrium payoff is increasing in α.

Figure 8 illustrates c∗(α) and P ’s equilibrium expected payoff, EU∗P (α), for α ∈ [0,1]. Intu-
itively, P ’s equilibrium payoff is increasing in the agencies’ alignment, α. Also intuitive is that
P ’s optimal investment, c∗(α), is decreasing in α. While this effect on the principal’s investment
is fairly straight-forward, we will see below that this induces the agencies to not share the princi-
pal’s preferences for alignment (Proposition 3), in spite of the fact that they do share a common
preference for successful coordination.

α

c*(α)

EUP*(α)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2: Optimal Fair Communication Reliability As a Function of Alignment
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2.2 Agencies’ Induced Preferences Over Alignment

Before extending the model to allow the agencies to have heterogeneous alignments, α1 and α2,
we first take a short detour to consider what the agencies would the prefer for their (common)
alignment, α, to be, given the supposition that P will invest c∗(α). Agency 1 and 2’s equilibrium
payoffs (i.e., based on c = c∗(α)), as a function of π, are contained in Appendix A. The following
proposition illustrates that, while P is indifferent about π, per se,5 the agencies are most assuredly
not indifferent to π. Indeed, an unfair communication protocol (π ≠ 1/2) induces one agency (the
one “favored” by the protocol) to prefer some misalignment (α < 1) and, in many cases, to most
prefer complete misalignment (α = 0).

Proposition 3 For any given π ∈ [0,1], Agency 1’s equilibrium expected payoff with endogenous

reliability is maximized by α∗ defined by the following:

α∗ =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 if π ≤ 1/2,

α̃(π) ∈ (0.8,1) if π ∈ ( 1/2,0.629382),

0 if π > 0.629382,

where α̃(π) is a strictly decreasing function of π for all π ∈ ( 1/2,0.629382).6

Proposition 3 has several implications. We discuss three of them now.

When Do Both Agencies Want Alignment? Note that the agencies mutually prefer perfect
alignment (α = 1) if and only if the communication protocol is fair (i.e., π = 1/2). The sufficiency of
a fair protocol for inter-agency agreement on alignment is not surprising. The necessity, however,
is a little surprising: regardless of π, the agencies have a common interest in coordination for any
alignment, α.

Disagreement Over Alignment. Because the game is symmetric (the agencies share a common
alignment, α, a supposition that we relax below), whenever Agency 1 prefers lower levels of
alignment, Agency 2 strictly prefers perfect alignment (α = 1), and vice-versa. Proposition 3
implies that, when the principal can bail out the agencies in their coordination problem by investing
c into the protocol, the agency who is disadvantaged by the communication protocol prefers that

5Again, this is because we have assumed that, in terms of outcomes, P is purely interested in the agencies coordi-
nating but is indifferent about which outcome they coordinate upon.

6For completeness, the function α̃(π) is the second root of 4 − 8p + (−2 + 12p)α + (−3 − 6p)α2 + 2α3 = 0.
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the agencies have aligned preferences. Thus, Proposition 3 indicates a conflict of interests between
the agencies whenever the communication protocol is biased: the agency that is advantaged by a
biased protocol would prefer to raise the stakes of successful coordination. As π becomes more

biased in favor of an agency’s preferred outcome, that agency would prefer to have a larger payoff

from its preferred outcome.

Agency Preferences with Noisy Recommendations. For moderately unfair communication pro-
tocols,7 the two agencies agree that a degenerate communication protocol (α =∈ {0,1}) is not opti-
mal. In fact, the preferences of the favored agency (in this case, Agency 1) over alignment, α, are
non-monotonic. As an example, Figure 4 displays the agencies equilibrium expected payoffs as a
function of α for an unfair communication protocol with π = 0.65.

α0.35

0.65

0.625

0 1

EU

Agency 1

Agency
2

Maximum value of fair communication

Agency 1 prefers
positive inequality

Figure 3: Preferences with Unfair Communication
π = 0.65

P ’s Preferences Over Fairness? Proposition 3 provides one reason for P to prefer to use a fair
communication protocol rather than an unfair one: if agencies expect that P will use an unfair
communication protocol, then the agencies’ induced preferences over α are no longer aligned,
unlike when the communication protocol is fair. If the agencies can shape their own preferences
(Section A.1), then P has at least one reason to use a fair protocol (π = 1/2). However, if alignment
is exogenous, then P can benefit from an unfair communication protocol when the agencies have
different alignments, α1 and α2.8 We now turn to this extension, which also allows us to examine

7In this particular specification, moderately unfair communication describes any π ∈ (0.370618,0.629382).
8We show that the qualitative features of the analysis above extend to such settings in Appendix A.1
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α
0.4

0.65

0.625

0 1

EU

Agency 1

Agency
2

Maximum value of fair communication

Agency 1 prefers
positive inequality

Figure 4: Preferences with Unfair Communication
π = 0.6

the agencies’ incentives to align their own preferences.

3 Alignment, Fairness, & Coordination

We now extend the model to allow each agency i ∈ {1,2} to value coordination on A at αi ∈ [0,2].
This allows for our model to consider Pareto-ranked coordination games. If α1 > 1 and α2 > 1,
then both agencies strictly prefer coordinating on A. These payoffs are displayed in Figure 5.

A B
A (α1, α2) (0, 0)
B (0, 0) (2-α1, 2-α2)

Figure 5: A Bigger Family of Asymmetric Coordination Games: (α1, α2) ∈ (0,1]2

When min[α1, α2] > 1 or max[α1, α2] < 1, we refer to the agencies as ordinally aligned:
they share a common ranking of the two coordination outcomes, A or B.9 When the agencies are
ordinally aligned, the equilibrium selection problem is arguably easier (e.g., Pareto efficiency picks
a unique outcome), and we will see shortly (Section 3.1) that the executive essentially recognizes
this if he or she can choose the communication protocol, π.

9We omit the special case of α = (1,1) for reasons that will become clear in Section 3.1.
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3.1 Equilibrium Communication Fairness, π

If the executive can choose the communication protocol, π, P ’s optimal choice depends on α =

(α1, α2). When the agencies’ preferences are ordinally aligned, the principal prefers to use a
degenerate communication protocol that always recommends that the agencies choose their (mu-
tually) most preferred coordination outcome.10 This preference for a degenerate communication
protocol is retained for agency preferences that are not “to far from” ordinal alignment. This is
illustrated in Figure 12, below, which identifies three qualitative regions. The upper right of the
figure (dark gray) represents the alignments that the executive prefers that the protocol recommend
the coordination outcome A, and the lower left of the figure (light gray) represents the alignments
that the executive prefers that the protocol recommend the coordination outcome B. The remaining
region (white) represents the alignments that prompt the executive to use a non-degenerate com-
munication protocol. This third region includes only situations in which neither of the coordination
outcomes is uniquely Pareto efficient.

α1

α2

0

2

0 2

B ∶ π∗ = 0

A ∶ π∗ = 1π∗ = π̂(α)

π∗ = π̂(α)

Figure 6: Endogenous Fairness: Regions of π∗

In the third region, the executive’s optimal protocol, π̂(α), is locally sensitive to changes in the
agencies’ alignments, α. Specifically, in the white region of Figure 12, the optimal protocol from
P ’s perspective is:11

π∗(α) = π̂(α) ≡

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1/2 if α1 = α2 = 1,

1
8
(α2 − α1 +

1
1−α1
− 1

1−α2
+ 4) otherwise.

(2)

10Formally, P prefers π∗ = 0 if max[α1, α2] < 1 and P prefers π∗ = 1 if min[α1, α2] > 1.
11Note that B & A are not adjacent in [0,2]2: one can verify that α = (1,1) ∈M.
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Equation (2) & Figure 12 jointly demonstrate that P ’s optimal protocol is fair (π = 1/2) if and only

if α1 = α2 = 1. Similarly, Equation (2) implies that π∗(α) is decreasing in α1 and increasing in α2.
This is in line with the logic described above regarding the flat regions, B and A. more aligned of
the two agencies (i.e., the agency i with the largest value αi).

When the protocol π is not fair, the agency’s induced preferences over their alignments, α, will
not be the same. In spite of this being a coordination problem (and therefore, somewhat com-
mon value in nature), the agencies have distinct preferences not only because they actually have
differing preferences, but also because they have different marginal values from the executive’s in-
vestment in the protocol, c∗, and these marginal values are themselves sensitive to the exact values
of the alignments, α = (α1, α2). Two examples of this are illustrated in Figure 7.

α1

EU∗1
0.7

0.1

0 2α‡
1 = 1.13 1.38 = α†

1

α
2 =1.75

α2=0.9

Figure 7: Agency 1’s Induced Preferences over α1

In Figure 7, the thick-lined curve portrays Agency 1’s induced preference over its own align-
ment, α1, when Agency 2 prefers coordination on outcome B (α2 = 0.9). In this scenario, Agency
1’s expected payoff, conditional on its own alignment, α1, given Agency 2’s alignment is α2 = 0.9,
is maximized by α1 ≈ 1.38. Under such an alignment by Agency 1, given α2 = 0.9, the two
agencies have ordinally-opposed alignments. However, if Agency 2’s relative preference for its
preferred coordination outcome is stronger (α2 = 1.75), then Agency 1’s expected payoff, given
Agency 2’s alignment, α2 = 1.75, is maximized by α1 ≈ 1.13, so that in this case, Agency 1 is
made best off if its preferences are ordinally-aligned with Agency 2’s.

Figure 7 illustrates Agency 1’s induced preferences over α1 given values of α2. Importantly,
we observe that agencies sometimes prefer misalignment - when α2 = 0.9 (Agency 2 prefers to
coordinate on B), for example, Agency 1 is best off with α†

1 = 1.38 (and prefers to coordinate on
A). This is because they are acting in anticipation of the principal’s actions; sufficient misalignment
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between agencies induces the principal to invest more in c and π. In other cases, agencies prefer
alignment in outcomes (see the case when α2 = 1.75), yet they still optimally want some degree of
misalignment in their preferences.

Remark 1 This analysis is unorthodox because it assumes that Agency 1’s payoff from coordi-

nation on A is actually equal to α1: thus, changing Agency 1’s alignment actually has both a

direct effect on Agency 1’s payoffs as well as an indirect effect through the principal’s choice of

π. Accordingly, the analysis involves interpersonal comparisons of utility, because it is comparing

Agency 1’s equilibrium payoff under one set of preferences over outcomes (as opposed to “stated

preferences over outcomes,” as in Gibbard (1973), Satterthwaite (1975)) with its equilibrium pay-

off under a different preferences over outcomes.

3.2 Equilibrium Reliability, c∗(α)

With the optimal communication protocol, π∗(α), in hand, we can now derive the equilibrium
level of investment. We start our presentation in the baseline case of equally aligned agencies
(α1 = α2 ≡ α ∈ [0,1]) and k = 0 (guaranteeing that the agencies will both pay attention to the
protocol if c is close enough to 1).

Equal Alignments (α1 = α2 ≡ α ∈ [0,1]) and Certain Observation. Suppose that α1 = α2 ≡

α ∈ [0,1]), so that Equation (2) yields π∗(α) = 1/2, and k < k∗(α, 1/2). Then Equation 1 easily
yields the following as P ’s optimal reliability, c∗(α, 1/2):

c∗(α, 1/2) =
2 − 2α + α2

4
,

which is decreasing in α ∈ [0,1], and P ’s corresponding equilibrium payoff is

u∗P (c
∗(α, 1/2) ∣ α1 = α2 = α) =

1

16
(α2 − 2α − 2)

2
,

which is increasing in α ∈ [0,1]. Figure 8 illustrates c∗(α) and P ’s equilibrium expected payoff,
EU∗P (α) for α ∈ [0,1]. Intuitively, P ’s optimal level of reliability is decreasing in α.
We now relax the assumption that k = 0, implying that there may be the possibility that k is
sufficiently large to render the communication protocol ineffective due to the agencies ignoring it.

Equal Alignments (α1 = α2 ≡ α ∈ [0,1]) and Uncertain Observation. We now relax the pre-
sumption that P knows that the agencies will observe the recommendation with certainty. Instead,
we suppose that the upper bound of the distribution of ϵ1 and ϵ2, k > 0, is unobserved by the prin-
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c*(α)

EUP*(α)
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Figure 8: Optimal Communication Reliability As a Function of Alignment, α1 = α2 = α

cipal and distributed according to a CDF, G ∶ R+ → [0,1] that assigns positive probability to k

being sufficiently large to rule out observation in equilibrium: G(k∗(α,π)) < 1.12 In this case, the
principal’s expected payoff depends on α, π, c, and k:

uP (c ∣ k) =

⎧⎪⎪
⎨
⎪⎪⎩

c + (1 − c)α(2−α)2 − c2 if k < k∗(α,π),
α(2−α)

2 − c2 if k ≥ k∗(α,π).

Note that the investment cost, c, is lost regardless of whether communication actually occurs,
implying that P has a non-trivial trade-off when choosing c as long as P knows that there is a
positive probability the agencies will pay attention to the protocol in equilibrium. Accordingly,
the optimal investment in this setting will be some number in the interval (0, c∗(α), where c∗(α)

is defined in Equation (6), above (after inserting the presumption that α1 = α2 = α). Because
investment is always costly but useful only if k < k∗(α,π∗(α), the exact value of the optimal
investment in this setting will (intuitively) depend on the distribution of k: the optimal investment
will be an increasing function of G(k∗(α,π∗(α))) ∈ (0,1).

Figure 13 illustrates the maximum cost of attention that the agencies are willing to incur given
their alignments (k∗(α,π)). Note that P ’s objective is to choose a value of π that maximizes
k∗(α,π), as this would maximize the chances that agencies observe the recommendation. When
agencies are aligned, P always recommends the outcome that both agencies prefer; P ’s optimal
choice of π is therefore either 0 or 1. Only when agencies are misaligned in outcomes (and no
one agency strongly prefers one outcome over another, in which case P recommends that outcome
with certainty) will P optimally choose some interior value of π. Further note that agencies are
less willing to pay attention as they become more indifferent to the two outcomes.

12Note that we presume that, if k < k∗(α,π), the agencies play the “complete attention equilibrium” with ϵ∗i = k
for both agencies i ∈ {1,2}. There is a continuum of subgame perfect Nash equilibria in this setting: we are focusing
on the unique Pareto efficient equilibrium.
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0

0.95
k∗(α,π)

0 1
π

(a) α1 = 0.25

0.245

0.256
k∗(α,π)

0 1π̂
π

(b) α1 = 1.1

0.65

0

k∗(α,π)

0 1
π

(c) α1 = 1.75

Figure 9: Maximum Cost of Attention that Agencies are Willing to Incur, α2 = 0.9

The General Case: Heterogeneous Alignments and Uncertain Attention. The derivation of
optimal investment with heterogeneous alignments in Equation (5), above, can be used in the same
way as c∗(α) (as defined in Equation (6)) was used in the common alignment with uncertain
attention case examined above. Note that Equation (5) can be rewritten as follows:

c∗(α1, α2) =
1

4
+
(α1 − 1)(α2 − 1)

4
,

which makes clear that each agency’s misalignment is complementary in terms of supporting the
agencies both paying attention to the protocol’s recommendation in equilibrium. We now turn to
the question of P ’s incentives when choosing which pair of agencies to task with coordination.

3.3 Picking Agencies to Coordinate

Suppose that the principal has one agency (Agency 1, with fixed and known alignment, α1 ∈ [0,1])
that must be involved in policy-making, and is faced with a choice of which agency to choose as
“Agency 2” to work with Agency 1. In all of the settings we have considered, the “most highly
aligned” other agency (i.e., the agency j other than Agency 1 with the largest alignment value, αj)
is P ’s optimal choice of partner for Agency 1, regardless of α1.

However, if P can choose an agency that has the same ordinal preferences over the two coor-
dination outcomes as Agency 1, as pictured in Figure 10, then P ’s optimal choice is the agency

A B
A (α1, α2) (0, 0)
B (0, 0) (2-α1, 2-α2)

Figure 10: A Family of Pareto-Ranked Coordination Games (α1, α2 ∈ (0,1])
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The unique α-MSNE in this case is For any pair of alignments, α ≡ (α1, α2), the unique α-
MSNE is given by the following:

σ∗1(α) ≡ Pr[a1 = A] =
2 − α2

2
, and

σ∗2(α) ≡ Pr[a2 = A] =
2 − α1

2
,

and the equilibrium probability of coordination in the α-MSNE is

ϕ(α) =
(2 − α1)(2 − α2) + α1α2

4
.

4 Discussion and Empirical Implications

As mentioned in the introduction, the problem of policy coordination is well-recognized by policy-
makers and scholars alike. This recognition in the United States is demonstrated by the regularity
with which the federal government is reorganized. At least a casual reflection on periods of reor-
ganization (e.g., the advent of regulatory agencies in the late 19th/early 20th century, New Deal,
demobilization after WWII, the Great Society, the creation of the EPA and OSHA in the 1970s,
creation of DHS after 9/11, the reorganization of MMS following the Deepwater Horizon disaster)
indicates the potency of policy failures to spur such efforts. These efforts are costly and compli-
cated, so that is not too surprising. However, as also alluded to in the introduction, formal divisions
of authority remain quite common in the executive branch. For example, OSHA, the Department
of Labor, and the National Labor Relations Board (NLRB) have mutually overlapping policy re-
sponsibilities. Yet, the NLRB is an independent agency: in theory at least, it is insulated from
direct presidential control.

There are many reasons that such organizational divisions might emerge in equilibrium, of
course (Aghion and Tirole (1997), Boehmke, Gailmard and Patty (2006)). In some contexts, “suc-
cessful coordination” might be worrisome: for example, our theory omits concerns about adverse

selection (Carpenter (2001, 2002), Gailmard and Patty (2019), Gailmard (2022)). Such concerns
might induce the principal to create two “pools of experts” with separate career incentives to help
“audit” the recommendations of each agency (Battaglini (2002), Turner (2017), but see also Patty
and Turner (2021)).

More important, perhaps, is the fact that our theory is presuming that the principal is a unitary
actor. In the United States (and elsewhere), partisan and ideological competition over policy out-
comes can induce one or more political parties to have an incentive to “design agencies to fail”
(e.g., Moe (1989), but see also Patty and Turner (2024)). Such incentives were arguably at the
heart of the fights between President Nixon and the Democratically controlled Congress in the late
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1960s and early 1970s with respect to the EPA and, even more starkly, OSHA.

5 Conclusion

To be written.
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A Technical Appendix

In this section, we provide derivations and proofs for the claims made in the body of the article.
Proposition 2 In equilibrium, P ’s investment in reliability, c∗(α), is strictly decreasing in the

agencies’ common alignment, α, and P ’s expected equilibrium payoff is increasing in α.

Proof : With Equation (1) in hand, it is simple to derive P ’s optimal reliability, c∗(α):

c∗(α) =
2 − 2α + α2

4
, (3)

which is decreasing in α ∈ [0,1], and P ’s corresponding equilibrium payoff is

EU∗P (α) =
1

16
(α2 − 2α − 2)

2
, (4)

which is increasing in α ∈ [0,1].

A.1 Heterogeneous Alignments

We now allow the agencies to have different alignments: the payoff that Agency 1 receives from
its least-preferred coordination outcome (A) is α1 ∈ [0,2] and the payoff that Agency 2 receives
from its least-preferred coordination outcome (B) is α1 ∈ [0,2], as illustrated in Figure 11.

A B
A (α1, 2-α2) (0, 0)
B (0, 0) (2-α1, α2)

Figure 11: A Family of Asymmetric Coordination Games: (α1, α2) ∈ (0,1]2

The (α1, α2)-MSNE. For any pair of alignments, α ≡ (α1, α2), the unique α-MSNE is given by
the following:

σ∗1(α) =
α2

2
, and

σ∗2(α) =
2 − α1

2
,

and the equilibrium probability of coordination in the α-MSNE is

ϕ(α) =
α2 ⋅ (2 − α1) + α1 ⋅ (2 − α2)

4
.
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The following lemma demonstrates that the fundamental effect of alignment on coordination in
equilibrium remains true in this extension of the model.

Lemma 1 The probability of coordination is increasing in α1 (and α2).

Proof : The first partial derivative of ϕ(α) with respect to αi for either i ∈ {1,2} is

∂ϕ(α)

∂αi

= 2 (1 − α3−i) > 0,

establishing the claim.

Given (α1, α2), P ’s optimal investment in reliability is

c∗(α1, α2) ≡
1

2
+
α1α2 − α1 − α2

4
(5)

Our main result in this extension is essentially a robustness check. The following proposition
mirrors Propositions 1 and 2 and establishes that P ’s preference for more highly aligned agencies
is still true if the agencies have different levels of alignment.

Proposition 4 P ’s equilibrium investment is strictly decreasing in each agency i’s alignment, αi.

Proposition 4 does have substantive implications. For example, it indicates why some agencies
might try to be unbiased, if the principal, P , gets to choose which agencies to assign the task.
Simply put, the principal does not need to invest as much in the communication protocol when the
agencies are more aligned. We discuss this angle more, with empirical referents, in Section 4.

A.2 Agencies’ Equilibrium Expected Payoffs with Common Alignment, α

Agency 1 and 2’s equilibrium payoffs (i.e., based on c = c∗(α)), as a function of π, are as follows:

EU1(α, c, π) =
2 − 2α + α2

4
⋅ (π(2 − α) + (1 − π)α) + (1 −

2 − 2α + α2

4
) ⋅

α(2 − α)

2

EU2(α, c, π) =
2 − 2α + α2

4
⋅ (πα + (1 − π)(2 − α)) + (1 −

2 − 2α + α2

4
) ⋅

α(2 − α)

2
.

A.3 Endogenous Fairness of the Communication Protocol, π

We now allow the principal to choose both the communication protocol, π ∈ [0,1], and the amount
to invest in it, c ∈ [0,1]. As before, for any given c, the probability of communication failure is
1 − c. We also assume that each agency i has a privately observed attention cost, ϵi ∈R, which we
assume to be drawn independently from a distribution with CDF, Fi.
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1. The alignment values, α1 and α2, are made common knowledge.

2. The principal chooses π ∈ [0,1] and a level of investment in communication, c ∈ [0,1].

3. The principal’s choices, π and c, are made common knowledge.

4. Each agency i privately observes ϵi ∈R.

5. The agencies simultaneously choose whether to observe the recommendation, ωi ∈ {0,1}.

6. With probability ω1 ⋅ ω2 ⋅ c ⋅ π, the device coordinates the agencies on A (a = (A,A)).

7. With probability ω1 ⋅ ω2 ⋅ c ⋅ (1 − π), the device coordinates the agencies on B (a = (B,B)).

8. With probability 1 − ω1 ⋅ ω2 ⋅ c, the agencies play the α-MSNE.

9. The choices (a1, a2) are revealed and the players receive their payoffs:

vi(ωi, a) = ui(a) − ωi ⋅ ϵi for each agency i ∈ {1,2}, and

vP (a, c) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 − c2 if ai = a2,

−c2 otherwise.

The Agencies’ Incentives. Each agency makes two choices in the process, but we focus on the
observation decision. The only restriction we are imposing on the agencies’ choice of ai is that the
agencies play the α-MSNE unless both agencies pay attention to the recommendation. We now
turn to this decision.

Uniformly Distributed Costs of Attention. Supposing that ϵ1 and ϵ2 are each independently
distributed according to the Uniform[0, k] distribution for some fixed and known k > 0, Agency 1
should observe the recommendation if

ϵ1 ≤ p∗1(π, c) ⋅ c
2 ⋅ (πα1 + (1 − π −

α1

2
) (2 − α1))((π −

α2

2
) (2 − α2) + (1 − π)α2) ,

and Agency 2 should observe the recommendation if

ϵ2 ≤ p∗2(π, c) ⋅ c
2 ⋅ (πα1 + (1 − π −

α1

2
) (2 − α1))((π −

α2

2
) (2 − α2) + (1 − π)α2) .
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ϵ1 < p
∗
2(π, c)c(πα1 + (1 − π −

α1

2
) (2 − α1))

ϵ2 < p
∗
1(π, c)c(πα2 + (1 − π −

α2

2
) (2 − α2))

Thus, in any equilibrium, the agencies’ cutoffs, ϵ∗1 & ϵ∗2 , must satisfy the following:

ϵ∗1 = ϵ∗1 ⋅ c
2 ⋅ (πα1 + (1 − π −

α1

2
) (2 − α1))((π −

α2

2
) (2 − α2) + (1 − π)α2) ,

ϵ∗2 = ϵ∗2 ⋅ c
2 ⋅ (πα1 + (1 − π −

α1

2
) (2 − α1))((π −

α2

2
) (2 − α2) + (1 − π)α2) ,

There is always an equilibrium in which neither agency pays attention (ϵ∗1, ϵ
∗
2) = (0,0). When a

positive attention equilibrium exists, there is an equilibrium in which both agencies observe the
recommendation with probability 1 (i.e., ϵ∗i = k for both i ∈ {1,2}). Such an equilibrium exists if
and only if

k < k∗(α,π) ≡
1

4
((α1 − 2)

2 + 4(α1 − 1)π) (α
2
2 − 4(α2 − 1)π) .

The Principal’s Incentives. Conditional on α, π, and k, P ’s optimal investment is

c∗(α) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
4 (α

2
1(α2 − 1)2 − 2α1(α2 − 1)2 + α2

2 − 2α2 + 2) if k < k∗(α,π),

0 if k ≥ k∗(α,π).
(6)

Note that Equation 6 implies that c∗(α) is independent of π. This is for two reasons:

1. P is assumed to be focused only on maximizing the probability of successful coordination,
independent of which of the two outcomes is achieved (i.e., P is indifferent between (A,A)
and (B,B)).

2. P ’s optimal choice of communication protocol, π∗(α), is chosen to equalize the marginal
impact of c on the equilibrium probability that Agency 1 will pay attention and it marginal
effect on the equilibrium probability that Agency 2 will pay attention, because the two values
are complements from P ’s perspective.

Second, mirroring Proposition 5 (which assumed that the agencies always observe the recommen-
dation), as either agency’s preferences become more aligned, P will in equilibrium invest less in
communication when either or both of the agencies are more aligned:

∂c∗(α)
αi

< 0, for each i ∈ {1,2}.
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A.4 Endogenous Fairness

Agencies pay attention if

ϵ1 < p
∗
2(π, c)c(πα1 + (1 − π −

α1

2
) (2 − α1))

ϵ2 < p
∗
1(π, c)c(πα2 + (1 − π −

α2

2
) (2 − α2))

Cutoff ϵ∗1, ϵ
∗
2 must satisfy the following:

ϵ∗1 = ϵ
∗
1c

2 (πα1 + (1 − π −
α1

2
) (2 − α1))(πα2 + (1 − π −

α2

2
) (2 − α2))

ϵ∗2 = ϵ
∗
2c

2 (πα1 + (1 − π −
α1

2
) (2 − α1))(πα2 + (1 − π −

α2

2
) (2 − α2))

There always exists equilibrium where (ϵ∗1, ϵ
∗
2) = (0,0): i.e., no attention. There may exist

equilibrium where (ϵ∗1, ϵ
∗
2) = (k, k): i.e., perfect attention. This is so if and only if

k < k∗(α,π) ≡
1

4
((α1 − 2)

2 + 4(α1 − 1)π)((α2 − 2)
2 + 4(α2 − 1)π)

If attention probability is either 0 or 1, then P’s choice of c is independent of π. Therefore, P’s
optimal investment is

c∗(α) =
⎧⎪⎪
⎨
⎪⎪⎩

1
4(α1 + α2 − α1α2) if k < k∗(α,π)

0 if k > k∗(α,π)

P’s optimal protocol design is to maximize k∗. Note that k∗ is a convex function of π if agencies
are aligned, and a concave function of π if misaligned. k∗(α,π) > 0 for all π. It follows that P ’s
optimal design when agencies are aligned is

π∗(α) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if α1 ≥ 1, α2 ≥ 1

0 if α1 < 1, α2 < 1.

When the agencies are misaligned, P chooses

π∗(α) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if π̂(α) < 0

π̂(α) if π̂(α) ∈ [0,1]

1 if π̂(α) > 1
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where

π̂(α) =
1

8
(6 +

1

1 − α1

− α1 +
1

1 − α2

− α2) .

α1

α2

0

2

0 2

π∗ = 0

π∗ = 1π∗ = π̂

0.9 (a) (b) (c)

Figure 12: Regions of π∗

0

0.95
k∗(α,π)

0 1
π

(a) α1 = 0.25

0.245

0.256
k∗(α,π)

0 1π̂
π

(b) α1 = 1.1

0.65

0

k∗(α,π)

0 1
π

(c) α1 = 1.75

Figure 13: Maximum Cost of Attention that Agencies are Willing to Incur, α2 = 0.9
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A.5 DefiningM, B, and A

Here we define the region of alignments,M ⊂ [0,1]2, in which P ’s optimal communication pro-
tocol is locally sensitive to α ≡ (α1, α2). To do this, define the following intermediary regions:

X(α) ≡ {α ∈ [0,1]2 ∶ 2α1(α2 − 1) > (α2 − 2) (α2 +
√
(α2 − 8)α2 + 8 − 2)},

Y (α) ≡ {α ∈ [0,1]2 ∶ 2α1α2 + α2

√
α2(α2 + 4) − 4 + 4 < 2α1 + α2(α2 + 4)}, and

Z(α) ≡ {α ∈ [0,1]2 ∶ α2 + 2 ≤ 2
√
2}.

Then,M is defined by the following:

M ≡X(α) ∩ (Y (α) ∪Z(α)),

and the regions B and A are a partition of the complement ofM in [0,1]2:

B ≡ 2α1(α2 − 1) + α2 (
√
α2(α2 + 4) − 4 − 4) + 4 > α

2
2, and

A ≡ 2α1(α2 − 1) ≤ (α2 − 2) (α2 +
√
(α2 − 8)α2 + 8 − 2) .

A.6 Incentive Compatibility in Costly Communication

Each agency’s expected payoffs from its observation choice are as follows:

EU1(ω1 = 1) = p∗2(π, c) ⋅ c ⋅ (πα1 + (1 − π)(2 − α1)) + (1 − p
∗
2(π, c) ⋅ c)

α1(2 − α1)

2
− ϵ1,

EU1(ω1 = 0) =
α1(2 − α1)

2
, and

EU2(ω2 = 1) = p∗1(π, c) ⋅ c ⋅ (π(2 − α2) + (1 − π)α2) + (1 − p
∗
1(π, c) ⋅ c)

α2(2 − α2)

2
− ϵ2,

EU2(ω2 = 0) =
α2(2 − α2)

2
, and

Thus, Agency 1 should observe the recommendation if

ϵ1 ≤ p∗2(π, c) ⋅ c ⋅ (πα1 + (1 − π)(2 − α1) −
α1(2 − α1)

2
) ,

≤ p∗2(π, c) ⋅ c ⋅ (πα1 + (1 − π −
α1

2
) (2 − α1)) ,
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α2

α∗1
1.56

0.44
0 210.82 1.18

Figure 14: Agency 1’s Optimal Choice of α1

and, similarly, Agency 2 should observe the recommendation if

ϵ2 ≤ p∗1(π, c) ⋅ c ⋅ (π(2 − α2) + (1 − π)α2 −
α2(2 − α2)

2
) ,

≤ p∗1(π, c) ⋅ c ⋅ ((π −
α2

2
) (2 − α2) + (1 − π)α2) .

Thus, given p∗2 , Agency 1 will pay attention with probability

p∗1(π
∗
2 ∣ π, c) = F1 (p

∗
2(π, c) ⋅ c ⋅ (πα1 + (1 − π −

α1

2
) (2 − α1))) ,

and, given p∗1 , Agency 2 will pay attention with probability

p∗2(π
∗
1 ∣ π, c) = F2 (p

∗
1(π, c) ⋅ c ⋅ ((π −

α2

2
) (2 − α2) + (1 − π)α2)) .

B Some Figures
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